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A LOGICAL PROCESSCALCULUS*

RANCECLEAVELANDIANDGERALDLi.JTTGEN_

Abstract. This paper presents the Logical Process Calculus (LPC), a formalism that supports hetero-

geneous system specifications containing both operational and declarative subspecifications. Syntactically,

kPC extends Milner's Calculus of Conmmnicating Systems with operators fl'om the alternation free linear

time p calculus (kT#). Semantically, kPC is equipped with a behavioral preorder that generalizes Hennessy's

and DeNicola's must testing preorder as well as kTp's satisfaction relation, while being compositional for

all kPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of

(i) both minimal and maximal fixed point operators and (ii) an unimplenlentability predicate on process

terms, which tags inconsistent specifications. The utility of I_PC is demonstrated by means of an example

highlighting the benefits of heterogeneous system specification.

Key words, heterogeneous specification, must testing, process algebra, temporal logic, testing theory

Subject classification. Computer Science

1. Introduction. Over the past two decades, a wealth of approaches to formally specifying and rea-

soning about reactive systems have been introduced. Most of these may be classified according to whether

they are based on process algebra [3] or temporal logic [27]. The process algebraic paradigm is founded on

notions of refinement, where one typically formulates a system specification and its implementation in the

same notation and then proves that the latter refines the former. The underling semantics is usually given

operationally, and refinement relations are formalized as preorders. In contrast, the temporal logic paradigm

is based on the use of temporal logics [27] to formulate specifications, with implementations being given in

an operational notation. One then verifies a system by establishing that it is a model of its specification, in

the formal logical sense. The strength of the former paradigm is its support for compositional reasoning, i.e.,

one may refine system components independently of others. The benefit of the latter paradigm originates in

its support for abstract specifications, where irrelevant operational details may be ignored. Both approaches

may be given automated support in the form of model checking when the considered systems are finite state.

The objective of this paper is to develop a compositional theory for" heterogeneous specifications that

unifornfly integrates both refinement based and temporal logic specification styles, thereby allowing both

approaches to be taken advantage of when designing systems. Accordingly, we present a novel Logical

Process Calculus (kPC) that combines the algebraic operators of Milner's Calculus of Communicating Systems

(CCS) [25] with the logical operators of the Alternation Free Linear Time # Calculus (kTp) [32]. More

precisely, we show that logical disjunction in kTp may be understood as internal choice, complementing
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the external choice operator in CCS, and logical conjunction in LT# as synchronous parallel composition,

complementing asynchronous parallel composition in CCS. Moreover, LT# is equipped with two recursion

operators, a least fixed point operator and a greatest fixed point operator, which allow for the finite but

unbounded, and the infinite, unwinding of recursion, respectively. The behavior described by the greatest

fixed point operator in LT# thus corresponds to recursion in CCS. In the light of this discussion, LPC extends

CCS by operators for disjunction, conjunction, and rr_inimal fizedpoints, as well as the basic processes tr'ue

and false, and thereby allows for the encoding of both LT# formulas and CCS processes in LPC (cf. Sec. 2).

The semantics of LPC is based on the testing approach of DeNicola and Hennessy [11]. The hallmarks of

this theory are the use of transitions to model both processes and tests and the differentiation of processes

on the basis of their responses to tests. Accordingly, we equip LPC terms with a transition relation defining

the single step transitions that specifications may engage in. We also introduce a novel unimplementabil-

ity predicate on terms whose role is to identify inconsistent specifications, such as false, that cannot be

implemented. Both the transition relation and the unimplementability predicate are defined via structural

operational rules, i.e., in a syntax driven fashion. We then carry over the definitions of must testing in [11]

to our setting and show that the resulting behavioral preorder (i) conservatively extends the traditional

must preorder between CCS specifications; (ii) is compositional for all operators in LPC; and (iii) naturally

encodes the standard satisfaction relation between CCS processes and kT# formulas (el. Sec. 3). Thus, our

framework may be seen to unify refinement based and logic based approaches to system specification, while

facilitating component based reasoning. Technically, this expressiveness follows from the mathematically

coherent inclusion of process and logical operators in LPC that is enabled by our treatment of unimple-

mentability (cf. See. 4). Practically, the theory allows system modelers to freely intermix operational and

declarative subspecifications using both system operators (e.g. parallel composition) and logical constructors

(e.g. conjunction). This gives engineers powerful tools to model system components at different levels of

abstraction and to impose declarative constraints on the execution behavior of components (cf. See. 5).

2. A Logical Process Calculus. This section formally introduces our logical process calculus, LPC.

W_ first present its syntax and then define its semantics via operational rules and a novel unimplementability

predicate. Finally, the calculus is equipped with a refinement preorder on processes, which is an adaptation

of DeNicola and Hennessy's must testing preorder [11].

2.1. Syntax of kPC. The syntax of LPC extends Milner's CCS [25] with disjunction, conjunction, and

least fixedpoint operators. It also includes a process constant for the universal process tr'ue, while false

will be a derived process term in our calculus. Formally, let A be a countable set of actions, or ports, not

including the distinguished unobservable, intcr'nal action T. With every a E A we associate a complemcntar'y

aetiort _. We define A := {E I a C A} and take A to denote the set A U A. Complementation is lifted to A

by defining a := a. As in CCS, an action a communicates with its complement g to produce the internal

action T. We let a, b,... range over A and c_,/3,.., over A_ := A U {T}. The syntax of LPC is then defined

as follows:

P ::= o lttlx Iw I_.PIP+PIPVPIPIPIPAPI
P XLI p[f] I#*.PI#k*.PI_.P

where k C N, x is a var'iable taken from some nonempty set F of variables, w is an infinite word over A whose

inclusion will be discussed in the next section, set L C_ A is a restr'iction set, and f : Mr --+ ,4_ is a finite

rclabeling. A finite relabeling satisfies the properties f(_-) = T, f(g) = f(a), and [{a [ f(c_) ¢ a}l < oc. V_



define L := {a[ a C L} and use the standard definitions for free and bound variables, open and closed terms,

guardedness, and contexts. We require for fixed point terms #x.P, #kx.P, and px.P that x is guarded in P.

Intuitively, #x.P stands for finite unbo_anded unwindings of P, while #kx.P encodes finite unwindings of P

bounded by k. A term is called alternation free if every variable bound by a least (greatest) fixed point #x.P

(vx.P) does not occur free in a subterm vy.Q (#y.Q) of P. We refer to closed, guarded, and alternation free 1

terms as processes, with the set of all processes written as 7p. Finally, we denote syntactic equality by --.

While it is obvious that I_PC subsumes all CCS processes, it is not immediately clear that it also encodes

all Alternation Free Linear Time # Calculus (kT#) formulas [5] 2. The syntax of LT# formulas is given by

the following BNF:

,I, ::= 0 I tt I ff I z I (a)¢ I ore I ¢A¢ I #z.'I' I ,z.(I,

In our setting, kT# formulas will be interpreted over infinite action sequences and also finite ones leading to

deadlock. This is why the 'deadlock formula' 0 is included in LTp. In LPC, ff corresponds to the term #X.T.X

and the next operator '(a}', for a E A, to the prefix operator 'a.'.

2.2. Semantics of I_PC. The operational semantics of an LPC process P is given as a labeled transition

system (P, A_, ---+, #,P), where P is the set of states, A_ the alphabet, ---+ C_ P x A_ x 7) the transition

relation, # C_ 7) our unirnplerue_tability predicate that is discussed below, and P the start state.

The transition relation is defined by the structural operational r_ales displayed in Table 2.1. For conve-

nience, we write P -_--+ pr instead of (P, c_, Pr} E ---+. Note that, for the CCS operators, the semantics is

exactly as in [25]. As for the other constructs, tt can nondeterministically engage in any action transition,

or decide to deadlock (cf. Rules (Truel) and (True2)). Process a.P may engage in action cr and then behave

like P (cf. Rule (Actl)), and similarly the process described by the infinite word aw may engage in its initial

action a and then behave like w (eft Rule (Act2)). The reason for including process w is to enable the mod-

eling of arbitrary system environments within our calculus, including those exhibiting irregular behavior.

The summation operator + denotes nondeterministic external choice such that P + Q may behave like P

or Q, depending on which communication initially offered by P and Q is accepted by the environment (cf.

Rules (Sum1) and (Sum2)). Analogously, V encodes disjunction or nondcterministie internal choice, i.e.,

process P V Q determines internally, without consulting its environment, whether to execute P or Q (cf.

Rules (Dis1) and (Dis2)). Process PIQ stands for the asynchronous parallel composition of processes P

and Q according to an interleaving semantics with synchronized communication on complementary actions,

resulting in the internal action _- (cf. Rules (Par'l) (Par3)). Similarly, P A Q encodes the eonj_anetion or

synchrono_us parallel composition of P and Q, with synchronization on all visible actions and interleaving

on _- (cf. Rules (Con1) (Con3)). The restriction operator" \L prohibits the execution of actions in L U

and, thus, permits the scoping of actions. Process P[f] behaves exactly as P where actions are renamed

according to the relabelin9 f. The remaining rules define the semantics of our least and greatest fixed point

operators. The minimal fi2c'edpoint process #x.P first guesses some number k C N that determines how

often P might be unwound, as encoded by the process #_.x.P (cf. Rules (Mul) and (Mu2)) 3. Here, P[Q/x]

stands for the process P with all of its free occurrences of variable x substituted by Q. This account of #

1The restriction to alternation fYee processes is made fbr continuity reasons that are elaborated on later.

2kT# is more expressive that linear time temporal logic, so the limitation to alternation free formulas does not impose

undue expressiveness restrictions.
3The presence of unbounded internal choice in Rules (%'uel) and (Mul) presents problems for more denotational process

theories; in LPC it proves not to be problematic because of our exclusively operational orientation.



TABLE 2.1

Operational semantics

m m

Truel a 6 _4 True2 --
tt_a.tt tt_0

Act1 Act2
c_.P -_--+ P

Sum1

Disl

Parl

aw_w

P_p' (2-%(2'
Sum2

P + (2 _ P' P + (2 _ (2'

Dis2
PV(2_ P PvQ_(2

P_P, (2 _+ (2,
Par2

PI(2 _ P'I(2 PI(2 _ PI(2'

p_p, Q!+Q,
Con2

PA(2 _PA(2'

P_P' (2 _ (2'

Conl
PAQ_P'AQ

P_P' (2-%G
Par3 Con3

PI(2 _+ P'I(2' P A (2 _+ P' A (2'

P _ p' p _ p'
Res _ _ L U L Rel

P \ L _ P' \ L p[f] I(_ p,[f]

Mul -- k c N Mu2 PEpk_lx.P/x] _ P' k > 0
#x.P J_ p_.x.P pkx.P _ P'

Nu
P[ux.P/x] _ P'

ux.P -_--->P'

may be seen as embodying a form of continuity: p is interpreted in terms of its finite unwindings. Because

of continuity problems associated with alternating least and greatest fixed points, in this paper we only

consider alternation free process expressions. The maximal fixedpoint process ux.P may unwind its loop

indefinitely, as is the case for reeursion in CCS (ef. Rule (Nu)). Note that the purely divergent process f_,

employed in some process algebras [16] for describing infinite internal computation, can be derived in LPC

aS /JJ;'.T. 3;'.

Temporal logics, including kTp, are capable of specifying inconsistencies or contradictions, i.e., behav-

iors equivalent to false. From an operational poin_ of view, a process describing an inconsistency is not

implementable, and thus runs of processes passing through unimplementable states should be ignored. Due

to nondeterministic choice, a process that can engage in such runs is not necessarily unimplementable itself.

It is only unimplementable if all of its runs must pass through an unimplementable state. This intuition is

reflected in the definition of our unimplcmentability predicate, given in Table 2.2, where we write P # for



TABLE 2.2

Unimplementability predicate #

1. #ox.P #=

2. P---+ and PAQ-_ implies PAQ#

3. Q---4andPAQ-_ implies PAQ#

4. P_ implies

• a.P_ • P[f]# •

• PAQ# • QAP#

• PIO# • QIP#

• ux.P# • #x.P# •

P\L#

#kx.P #

5. P# and Q:_ implies

• P+Q# • PvQ#

6. P[pk-lx.P/x] # implies #kx.P#, for k > 0

7. (Vk. pkx.P _=) implies #x.P#

P E # and where P----+ stands for qP' C 7) qa E A_. P -_--+ P'. In particular, a contradiction is present

within a conjunction P A Q, if the conjunction process cannot engage in any transition, although one of its

argument processes can (cf. Rules (2) and (3)). As an example, consider process a.0Ab.0, for a _ b. Further,

Rule (1) states that the unimplementability of P propagates backwards through prefixing. Note that the

operational semantics for LPC distinguishes between inconsistent processes that are unimplementable and

deadlocked processes that are implementable. For example, both processes (a.OIb.O) \ {a, b} and a.0 A b.0

cannot engage in any transitions. However, (a.0 A b.0) # while _(((a.0]b.0) \ {a, b}) #), as desired. All other

rules are straightforward, except for least fixed point processes, such as the process #0x.P that cannot un-

wind its body P further and is thus considered to be unimplementable (cf. Rule (1)). Together with Rules (6)

and (7), this implies that the process #X.T.X, which can engage in finite but unbounded numbers of r's, is

actually unimplementable. Indeed, we will identify this process with false and abbreviate it by ft. Finally,

it is easy to prove via induction on the structure of process terms that P -_--+ P' and P # implies P' #, for

any P,P' • P and a • A_.

The semantics for LPC does not only extend the standard CCS semantics but is also compatible with

the semantics of LT# formulas; see Thm. 3.5. This theorem, however, is not straightforward, and its proof

requires us to build a rich semantic theory for LPC. Before doing so we first introduce some notation. A

potential path rc of process P is a sequence of transitions (Pi _ Pi+s)0<i<k, for some k • NU {w}, such that

P0 - P- If _(Pi #), for all 0 _< i < k, then u is called an implementable path, or simply path. We use I_1 to

refer to k, the length of x. If ]Tv]= w, we say that w is infinite; otherwise, w is finite. Moreover, 7v is called

maximal if Iwl < co and Pill-_" The trace trace(w) of_v is defined as the word w := (ai)t_ • A _' := A*OA _,

where I_ := {0 _<i < Iwl ]ai _ 7}. In the case of I_ = 0, we let e stand for w = 0- Moreover, if 7v is finite,

we also write P _ Pill for 7r. We denote the sets of all finite, maximal, and infinite paths of P by IIfi,(P),

IIma×(P), and II_(P), respectively. We may also introduce according languages for P:

£+i.(P) := {trace(_)]_ • IIfi,(P)} C_A* finite trace language of P

£ma×(P) := {trace(_r)I_ • IImax(P)} C_A* maximal trace language of P

£_(P) := {trace(_r)lTr • II_(P)} g A _ infinite trace language of P

The semantic theory to be developed for LPC relies on the notion of divewence, i.e., a system's ability to

engage in an infinite internal computation. In this paper, we employ the traditional notion of divergence



as used by DeNicola and Hennessy [11]; more sophisticated definitions may be found elsewhere in the

literature [6, 26, 28]. A process P is divergent, in signs P 1_, if c C £_(P). For example, the process

f_ := pz.T.z, is divergent. A process P is called w divergent for some w C ¢1°_, in signs P 1_ w, if

3P _ C T_ 3v <fi, w. P _ P_ and P_ 1_. Here, <fin stands for the prefix ordering on words. We further

write £div(r) for the diveryertt trace language of P, i.e., £div(r) := {w C A °° [P _" w}. Finally, P is called

convergent or w convergent, in symbols P _L and P _L w, if _(P 1_) and _(P 1_ w), respectively.

2.3. Refinement in LPC. We now turn our attention to a behavioral theory of LPC, which defines a

behavioral preorder _ on processes such that P _ Q, i.e., Q refines P, if Q is "more defined" than P. The

preorder is an adaptation of DeNicola and Hennessy's m_ustpreor'der [11], which was developed within an

elegant testing theory and distinguishes processes on the basis of the tests they are necessarily able to pass.

In this context, tests are processes equipped with a special action ,/, which are employed to witness the

interactions a process may have with its environment. In order to determine whether a process passes a test,

one has to examine the maximal and infinite comFutations that result when the test runs in lock step with

the process under consideration.

Formally, a test is a process that might use the distinguished success action v / _ A¢. The set of all tests

is denoted by T. A maximal (irtfirtite) computatior_ 7r of process P and test T is a maximM (infinite) path 7r

of (PlT)\at, i.e., 7r = ((Pi[Ti) \ A -:-+ (Pi+_ [Ti+_) \ A)05i<l_l. Recall that paths only go along implementable

states. Computation _r is successful if Tk _ for some 0 _< k < I_1;otherwise, it is _ar_successful. Finally,

process P is said to must satisfy test T, in symbols P mustT, if every maximal and infinite computation

of P and T is successful. Our variant of the must preorder can now be defined as follows.

DEFINITION 2.1 (Must preorder). For P, Q E 12 we let P _ Q if, for all T E T, P must T implies

O must T.

It is easy to see that _ is a preorder, i.e., that it is reflexive and transitive. Note that this preorder can be

extended to open terms by the usual means of closed substitution [251. Moreover, _ satisfies the following

basic algebraic laws, where _ stands for the kernel _ n (_)-1 of _.

PROPOSITION 2.2. Let P, Q, R c 1). Then, the followin9 holds:

PIQ _ QIP (PIQ)IR _ PI(QIR) PIo _ P PI_ _

PvQ _ QvP (PvQ) vR _ Pv(Qv/_) Pvtt _ tt Pvff _ P

F.urther, P A P _ P, P V P _ P, and P V Q _ P.

It is also easy to see that the divergent process f_ does not must satisfy any tests, except the trivial ones,

such as v/.0. Hence, it is the smallest process with respect to _. Conversely, process ff must satisfies every

test, since it does not possess any computation due to ff_. Consequently, ff is the largest process with

respect to _. Also tt is a distinguished process in our setting; it is the smallest convergent process with

respect to _. Thus, we have f_ _ tt _ fP.

4This ordering is the reverse of the more usual Boolean ordering, which holds that ff is lower than tt. Our ordering is due

to the fact that must refinement implies reverse language containment.



3. Properties of the Must Preorder. In this section we investigate the utility of our calculus for the

heterogeneous specifcation of reactive systems. We show that our must preorder is a conservative extension

of the one of DeNicola and Hennessy, provide its characterization in terms of traces and initial action sets,

investigate its close relation to LT# satisfaction, and finally establish its compositionality properties.

3.1. Extension of DeNicola and Hennessy's Must Preorder. It is easy to see that our must

preorder c is a conservative extension of the original must preorder _DII of DeNicola and Hennessy, defined

on CCS processes [11]. The reason is that their and our definitions of the testing framework coincide on CCS

processes. Hence, we may formally obtain the following conservativity theorem.

THEOREM 3.1. Let P, Q be CC5 processes. Then, P c Q if and only if P 5DII Q"

3.2. Characterization. We now present a characterization of our must preorder which will be used for

obtaining some of our main results. The characterization closely follows the lines of a similar characterization

of DeNicola and Hennessy's must preorder [11]. It uses the notation Z(P) for the set {a E AlP _* _L_}

of visible initial actions of P.

THEOREM 3.2. Let P, Q be processes. Then pc Q if and only if for all w E A °° such that P g w :

1. O,_w

2. ]w] < w: VQ'. Q _ Q' implies 3P'. P _ P' and Z(P') c_ Z(Q')

I< = _: ,e • _(Q) implies w • £_(P)

Observe that this characterization is also sensitive to infinite traces and not only finite ones (cf. Cond. (2)).

This is superficially similar to the improved failures model of [7]; the difference is that infinite traces in [7]

convey divergence information, while they convey convergence information in the above characterization.

The proof of the above theorem relies on the following four distinguished tests, where k • N, w =

(ai)o<i<k • `4*, V • `4w and a • A.

1. Tw_ := ao.al.....ak-l.0lT.x/.0

2. Tt_ n :---- ao.(al..-..(ak_ 1.0 -[- 7-.V/.0) "'" ) -[- T.V/.0) -[- 7-.4.0

3. T_a_ := a0.(a_...- .(a___.a.4.0 + _.4.0)... ) + _.4.0) + _.4.0

4. TW :-- vl_.v/.0

The intuitions behind defining these tests are as follows.

LEMMA 3.3. Let P be an arbitrary IPC process and

1. Let w • .4*. Then, P _ w if[ P mustT_.

2. Let w • .4* such that P _. w. Then, w _ fl-.fin(P) iff P mustT_!".

m ._tT "ax3. Let w • .4* such that P _ w. Then, w _ £_ax(P) iff qa • .4. P u__ _,_.

4. Let v • .4_ such that P _ v. Then, v _ £_(P) iff P mustT_.

The proof of this lemma is not too difficult but tedious; it follows our definition of must passing tests and

is similar to the corresponding proof in [9]. Note that the first property can also be carried over to infinite

words, due to our 'approximative' definition of divergence.

3.3. Extension of LTp Satisfaction. To prove that our must preorder is also an extension of LT#

satisfaction we first recall the standard semantics of LT#. An LT# formula is interpreted as the set of those

finite and infinite sequences over .4 that validate the formula. Formally, the semantics _c of a possibly



openLT#term• is definedrelativeto anenvironmentg mapping variables to subsets of A °°. Note that

our variant of the linear time # calculus I5] can be used to reason about deadlock traces as well, due to our

inclusion of the atomic proposition 0; this is why we also consider finite traces, in addition to infinite ones.

[[tt]]C := A°° [fl_C := _ [[xlC := E(a;')
I<_>m]]C := {_wlwclrmV} I[0V := {d
I_,*.¢F == Iq{_ c_A_ I IeVEx_l c__} I(])l A (])2]]C := [[(TPl]En I(TzD2]] E

I[_*.e]le == U{_ c_A_ I_ c_I<l<_rl} I(])l v (])2]]e := [[(g#l]_'U I(TzD2]] e

In case @ is a formula, i.e., @ is a closed LT# term, it is easy to see that the environment g is irrelevant. We

say that a CCS process P satisfies e#, in signs P I= q_, if all traces of P are included in the traces of [@].

Formally, P I= @ if (i) Cdiv(P) C_ Cdiv(q)), (ii) £ma×(P) C_ [q)], and (iii) £_(P) C_ Id#].

Further, kT# formulas, when considered as a sublanguage of LPC, possess two ilnportant properties.

First, all formulas • are convergent, i.e., £_div((I )) = 0. This is because the internal prefix operator 'r.' is

not available in LT#. In addition, the atomic propositions tt, if, and 0 do not give rise to divergence. As

a consequence, Coati. (i) in the definition of P _ 4) above can be simplified to £;d_v(P) = 0. In particular,

formula tt is satisfied by convergent processes only, whence P _ tt if and only if £div(D) = 0. Second, every

LT# formula @ is purely nondeterministic in the sense that all choices are internal:

Vq)', q)" Va,/3. • _ q)', • -_ _", q)' _ q)" implies a -/3 - r.

This is due to the fact that disjunction is modeled as internal choice in LPC.

PROPOSITION 3.4. Let O_ be art LT# formula and P a CCS process. Then, O__P if and only if

# £div(P) = O, (i O £m,_x(P) C_ £,,,ax('::I)), and (iii) £._ (P) C_£_ (4#).

The proof of this proposition relies on our characterization theorem for _ (cf. Thin. 3.2) and uses the two

properties of formulas mentioned above. The proposition is the key for establishing the next theorem.

THEOREM 3.5. Let P be a CCS process and • art LT# formula. Then, P _ @ if and only ff • _ P.

Due to Prop. 3.4 and the definition of _, it is sutIicient to prove that [[@_ = Cmax(@) U £_(0). This can

be done along the structure of LT# formulas, but requires the appropriate extension of the definition of

languages to open terms.

3.4. Compositionality. One virtue of process algebras is that they allow for reasoning compositionally

about processes. Our logical process calculus LPC is no exception. Indeed our must preorder is compositional

for all operators, except for the choice operators + and V. This compositionality defect manifests itself in

many behavioral preorders, including DeNicola and Hennessy's must preorder. The largest precongruence _K

contained in 5 can be obtained in the standard fashion [11].

DEFINITION 3.6 (Must precongruence). For" P,Q E 7) we write P K_ Q if (i) Pa_Q and (ii) Q _+

implies P _+.

W_ can now establish the desired compositionality result.

THEOREM 3.7. The preorder E_ is a precongruence, i.e., for" all processes P,Q such that P E_ Q, the

following properties hold:



• a.PE_a.Q forallaEA • P\LE_Q\L

• P+RE_Q+R for allRcP • P[f]E_Q[f]

• PVRE_QVR for allRcP • #kx.PE_pkx.Q

• PIRE_QIR for allRcP • #x.PE_px.Q

• PARE_QAR for allRcP • ux.PE_ux.Q

Moreover, E_ is the largest precongrucncc contained in _.

for all restriction sets L

for all rclabelings f

for all x E F and k C N

for all x E P

for all x E P

The compositionality property can be checked straightforwardly for most operators by referring to Thin. 3.2.

For asynchronous parallel composition, the compositionality of _E follows immediately from the fact that

PIQmustT if and only if PmustQIT , for all P,Q C P and T E T; this is essentially the associativity

property of I • The proof of the 'largest' statement of Thm. 3.7 is standard [11].

4. Discussion and Related Work. This section compares LPC to related work and discusses in some

detail the fundamental differences of the setting presented in this paper to our previous approach [9].

Most early related work couples operational and declarative approaches to system specification loosely

and does not allow for mixed specifications. This includes the large amount of work on relating behavioral

equivalences or preorders to temporal logics in one of the following ways: (i) establishing that one system

refines another if and only if both satisfy the same temporal formulas [12, 17, 25, 31]; (ii) translating finite

state labeled transition systems into temporal formulas [30]; or (iii) encoding subclasses of temporal formulas

as behavioral relations via the idea of implicit specifications [23]. Other work, in the field of compositional

model checking [8, 14, 20] is aimed at supporting a modular approach for reasoning about temporal logic

specifications. Several researchers have also considered the inclusion of different fixed point operators in

behavioral theories of processes in order to model fairness and unbounded but finite delay [15, 18]. One may

also find a process algebra with an element similar to our process ff in [2].

Diverting from these approaches, advanced frameworks for genuine heterogeneous specifications have

been developed as well, which can be distinguished whether they are logic/algebraic or automat_theoretic.

4.1. Logic/algebraic approaches. This category includes the seminal work of Abadi and Lamport,

who have developed ideas for heterogeneous specifications for shared memory systems [1]. Their technical

setting is the logical framework of TLA [22], in which processes and temporal formulas are indistinguishable

and logical implication serves as the refinement relation. The difference to our setting is that TLA refinement

is insensitive to deadlock and divergence. While this might not be a problem for shared memory systems, it is

not suitable for reasoning about distributed systems, at which our calculus LPC aims. Graf and Sifakis follow

a similar line in [13]. There, a logic is developed that includes constructs for actions and nondeterministic

choice, and a logical encoding of operational behavior is given. One establishes that a system satisfies a

property by showing that the logical formula associated with the system implies the property.

In a different line of research, Valmari et al. have studied several congruences preserving "next time

less" linear time temporal logic [27], which may also handle deadlock and livelock E19, 28, 33]. A good

overview by Puhakka and Valmari on the matters of liveness and fairness in process algebra can be found

in [29]. This paper also observes that, during system refinement, fairness constraints are often only relevant

for intermediate systems and are automatically implied when considering the larger system context. It then

suggests a way to avoid constructing the usually infinite intermediate systems. Our work complements theirs

in that LPC allows for embedding arbitrary kTk formulas in operational specifications, instead of a specific



classoffairnessconstraints.However,kPCdoesnotavoidreasoningaboutinfiniteintermediatesystems,since
webelievethatsuchreasoningposesnoproblemwhenemployingcleverdatastructuresforimplementing
ourmustpreorderinverificationtools.Finally,notethatDeNicolaandHennessy'stestingtheory[11]has
alsobeenenrichedwithnotionsoffairness[6,26]toconstraininfinitecomputationsin transitionsystems.

4.2. Automata theoreticapproaches.Regardingautomatatheoretictechniques,theworkofKur-
shan[21],whopresentedatheoryofw word automata that includes notions of synchronous and asynchronous

composition, is of direct relevance to this paper. However, Kurshan's underlying semantic model maps pro-

cesses to their infinite traces, and the associated notion of refinement is (reverse) trace inclusion. In theories of

concurrency, such as in ours in which deadlock is possible, maximal trace inclusion is not compositional [2@

The most closely related approach to the one presented here was introduced by the authors in [9]. Biichi

automata were employed to uniformly encode mixed operational and declarative behavior, exploiting the

well known relation between Biichi automata and kTk [34]. We equipped this semantic framework with

a notion of B/ichi must testing that extends DeNicola and Hennessy's must testing preorder from labeled

transition systems to Biichi automata. The intuition was only to consider those infinite traces as infinite

computations that go through Biichi states infinitely often, and only to accept those infinite computations for

which the considered Biichi test declares success infinitely often. The relation of our Biichi must preorder

to the kTk satisfaction relation, with the central result intended to be analogous to Thin. 3.5, was then

established in a pure automat_theoretic fashion by suitably adapting the construction of [34]. However,

our previous approach had several shortcomings which made it unsuitable as a semantic basis for a logical

process calculus; these are discussed next.

Most importantly, our paper [9] contained a subtle technical mistake in the analogue of Lemma 3.3,

which propagated through the paper's results. In a nutshell, the setup of B_chi testing did not allow us, as

was intended, to ignore non Biichi divergent traces, i.e., those infinite internal computations that go through

Bfichi states only finitely often. While most of the results of [9] could be repaired by explicitly observing non

Bfichi divergence, the framework did no longer reflect the underlying intuition, and it made compositionality

difficult to achieve for some operators, including parallel composition. Moreover, our identification of if,

or other inconsistent specifications, with non Biichi divergence lead to the invalidity of the desired law

P V ff _ P. The present paper repairs this defect by associating ff with a process that cannot engage in

any observable transition, nor in any divergence. In order to then distinguish ff fl'om, say', 0 we introduced

the unimplementability predicate. Similar difficulties arose when interpreting tt as Biichi divergent process,

which is why this paper distinguishes between tt and f_, making tt the smallest cortvcr'gent process with

respect to our must preorder, while Ft is still the smallest process overall.

Indeed, the collection of these insights also allowed us to do away with Biichi automata as our semantic

framework for heterogeneous system design altogether. Accordingly, kPC encodes the least and greatest

fixed points occurring in temporal logics via labeled transition systems, where the process algebraic semantic

rules for least fixed points reflect the intuition that the recursion under consideration can only be unwound

finitely often, while a recursion associated with a greatest fixed point may be unwound infinitely often.

Hence, in kPC all infinite traces are 'good', which means that the expressive power of Biichi automata to

distinguish 'good' and 'bad' infinite traces is no longer needed. The result is a process calculus, kPC, in which

classical process algebras and linear time temporal logics can be uniformly integrated, as was envisioned

in [9]. The integration is mathematically elegant, as testified by our compositionality and conservative

extension results that were established in a pure syntax driven manner.
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5. Example:HeterogeneousSystem Design. This section illustrates, by means of an example, the

kind of refinement based system design supported by LPC. The example advocates a heterogeneous style of

system specification, combining process algebraic and temporal logic specifications, and thereby testifies to

the utility of our calculus. It will be convenient to express temporal constraints by means of formulas in

Lir_ear time Temporal Logic (LTL) [27] a temporal logic that engineers often prefer over the linear time

p calculus [5]. W% thus briefly show how LTL formulas can be encoded in LT# or, more precisely, in our new

calculus LPC.

5.1. Encoding of I1"1 in IPC. Since we would like to describe action based distributed systems and

their deadlock behavior, the variant of kTL studied here includes the atomic propositions a, for a C A, and O.

Note that, in the context of temporal logics, A is always taken to be a finite set.

::= o l a I tt I ff I @v q, I • A • I X_ I>>,_ I CU_ I _V_

The temporal operators X, U, and V are intuitively interpreted as next, until, and release operators, respec-

tively. Operator )( is the dual operator of X, which is a next operator that tolerates deadlocks; note that X

is not sel_dual in the presence of finite traces. An LTL formula • corresponds to the LPC process {[O]},

where the translation function {[.]} is defined inductively along the structure of @ as follows and where x is

some randomly chosen variable in F.

{[tt]} := tt {[O]}:= 0

_ff]} := ff {[a]} := a.tt

{_(I)l V (1)2]} := {[(])l]} V 1[(1)2]}

{_(I) 1 A (1)2] } := {[(])l]} A 1[(1)2]}

{Ixo]}:= V_,_ _._e]}
tI£_']/:= 0 v V_,_x_._e_

{<uox]} := #x.{Iex]}v ({<]} A Va_xa-x)
{<W4} := -*.{0_]} A ({<]} V o v Vacua.x)

For convenience, we abbreviate formula ffVq> by g q_ ("generally o_") and ttUq_ by F q_ ("eventually q_"), as

usual. Moreover, we let a _ • stand for the process a._ V 0 V V_b b.tt that is valid if and only if, for

all traces of the form ate,, trace w satisfies • .

5.2. Example. Suppose an engineer is expected to design a reliable bidirectional network link in a

component based fashion. One might think of this link as a composition of two reliable unidirectional links

that are closely tied together. In particular, the failure of one unidirectional link should imply the failure

of the other, which is a typical physical constraint of bidirectional links. The engineer might begin with a

simple specification of an unreliable unidirectional link,

ULSpec := _x._pp.(x + fail.uy.down.(y V x)),

which signals whether the link is up or down, or whether it just failed. In case of failure, the link tries to

repair itself and, if and once it is successfully repaired, it returns to its initial state. However, a successful

repair is not guaranteed, whence the process ULSpec may infinitely engage in the dow_loop over variable y.

To obtain a specification RLSpec of a reliable unidirectional link, ULSpec is simply refined by adding

a constraint imposing a "repair guarantee," RG := G (Ia±l _ FW_p), i.e., every broken link is eventually

repaired and up. We then define RLSpec := ULSpec A RG, which essentially does away with the dow>loop

11



in ULSpec. The desired bidirectional link might then be specified as follows:

BLSpec := (RLSpec[upl/up, downl/down, sync/fail]

I RLSpec[up2/up, down2/down, synd/fail]

) \ {sync},

where the synchronization on action fail, via the relabeling to action sync, ensures that the failure of

one unidirectional link implies the failure of the other. Note that the constraints Rg indirectly refer to

action sync, which is restricted in BLSpec.

The engineer may now refine the heterogeneous LPC specification BLSpec into a pure CCS implementa-

tion. The idea is to fulfill the constraints RG by eliminating the down loop in ULSpec, thus encoding that a

repair can always be successfully carried out immediately. The implementation of RLSpec might accordingly

be chosen as the CCS process RLImp := _,.W-pp.(,+ fail.down.x). We now establish that RLImp indeed refines

RLSpec in the framework of our must precongruence. First of all, it is easy to see by our characterization of m

(cf. Thm. 3.2) that ULSpec _ aLImp, due to the internal rzorzdc_cr'ministic choice in ULSpec. Further, we ob-

viously have RLImp _ RG. Hence, we may infer by Thm. 3.5 that Rg m RLImp. Because RLImp cannot engage

in an initial _- transition, we may in summary conclude ULSpec _E RLImp and RG _E RLImp. By Prop. 2.2,

which is also valid for _E, and by Thin. 3.7, we derive RLSpec = ULSpec A Rg _E RLImp A RLImp _E RLImp, as

desired.

When replacing in BLSpec the components RLSpec by RLImp we obtain an implementation of our reliable

bidirectional link, to which we refer as BLimp. Since _E is a precongruence and RLSpec _E RLImp, we obtain

BLSpec _E BLimp, i.e., BLimp refines BLSpec, which coincides with our intuition.

Finally, it is worth mentioning that LPC actually may be seen as a temporal logic that allows for some

restricted form of branching time reasoning. For example, the LPC process sync _ (_.tt + down2.tt)

encodes the property that the system state reached when executing action sync has both actions downl

and down2 enabled. Observe that, in contrast to downl.tt + down2.tt, the term downl.tt A down2.tt in LPC

specifies the obvious contradiction that every initial transition is labeled by both actions downl and down2

at the same time.

6. Conclusions and Future Work. \¥e presented a novel logical prvccss calculus LPC that integrates

both classical process calculi, such as Milner's CCS, and temporal logics, such as the alternation free linear

time p calculus [_T#. The syntax of t_PC enriched CCS by operators for synchronous parallel composition

(conjunction) and nondeterministic choice (disjunction), as well as by minimal fixed points operators (finite

unwindings of recursion). The semantics of t_PC was given in terms of labeled transition systems and an

unimplementability predicate, both defined via structural operational rules. A refinement preorder on process

terms was then introduced, which conservatively extends both DeNicola's and Hennessy's must preorder and

the [_T# satisfaction relation. Hence, [-Tp model checking may as well be understood as refinement checking.

Finally, our must preorder was also shown to be compositional with respect to all operators in [-PC.

The outcome of our studies is a heterogeneous specification language, which allows system designers to

specify systems in a mixed operational and declarative style, together with a behavioral preorder that permits

component based refinement. W_ believe that our setting provides groundwork for formally investigating

those software engineering languages that support heterogeneous specifications as a mixture of operational

state machines and declarative constraints, such as the Urzificd Modclirzg Language [4].

12



Regarding future work, we intend to study axiomatizations of our must preorder. We also plan to

develop an algorithm for computing the must preorder with the goal of implementing kPC in automated

verification tools, such as the Concurrency Workbench NC [10].
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